
CS250P: Computer Systems Architecture
Achieving Correct Pipelining

Sang-Woo Jun

Fall 2022

Large amount of material adapted from MIT 6.004, “Computation Structures”,
Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,

and CS 152 Slides by Isaac Scherson

A problematic example

❑ What should be stored in data+8? 3, right?

❑ Assuming zero-initialized register file, our pipeline will write zero
Why? “Hazards”

Hazard #1:
Read-After-Write (RAW) Data hazard

❑ When an instruction depends on a register updated by a previous
instruction’s execution results
o e.g.,

Fetch WritebackDecode Execute Memory

i1: add s0, s1, s2

i2: add s3, s0, s4

Register
File

Cycle 1

Cycle 2

Cycle 3

i1 reads s1, s2

i2 reads s0, s4 i1 calculates s0

Hazard #1:
Read-After Write (RAW) Hazard

Fetch WritebackDecode Execute Memory

i1: addi s0, zero, 1

i2: addi s1, s0, 0 s0 should be 1, s1 should be 1

Cycle 1 s0 = 0

Cycle 2 s0 = 0

Cycle 3 s0 = 0

Cycle 4 s0 = 0

Cycle 5 s0 = 0

Cycle 6 s0 = 1

i2 reads s0, but s0 is still zero!

Solution #1: Stalling

❑ The processor can choose to stall decoding when RAW hazard detected

Fetch WritebackDecode Execute Memory

Register
File

Cycle 1

Cycle 2

Cycle 5

i1 reads s1, s2

i2 not decoded i1 writing s0

…

Cycle 6

i1: add s0, s1, s2

i2: add s3, s0, s4

i2 reads s0 i1 retired

Sacrifices too much performance!

Pipeline “bubbles”

Little’s law: 𝐿 = 𝜆𝑊 → 2 = 𝜆*5

Solution #1: Stalling

Fetch WritebackDecode Execute Memory

i1: addi s0, zero, 1

i2: addi s1, s0, 0

Cycle 1 s0 = 0

Cycle 2 s0 = 0

Cycle 3 s0 = 0

Cycle 4 s0 = 0

Cycle 5 s0 = 0

Cycle 6 s0 = 1

i2 stalled until s0 is applied

Cycle 7 s0 = 1

“Pipeline bubble” – Wasted cycles

Sacrifices too much performance!

i2 reads correct s0

Solution #2: Forwarding (aka Bypassing)

❑ Forward execution results to input of decode stage
o New values are used if write index and a read index is the same

Fetch WritebackDecode Execute Memory

Register
File

i1: add s0, s1, s2

i2: add s3, s0, s4

Cycle 1

Cycle 2

Cycle 3

i1 reads s1, s2

i2 reads s0, s4 i1 calculates s0

But! Uses new s0 forwarded from execute

No pipeline stalls!

Solution #2: Forwarding details

❑ May still require stalls for a deeper pipeline microarchitecture
o If execute took many cycles?

❑ Adds combinational path from execute to decode
o But does not imbalance pipeline very much!

Fetch WritebackDecode Execute Memory

Register
File

Instruction
bit decode

Register file
access

Execute

Combinational path only to end of decode stage! (decode/regfile access does not depend on forwarded data)

(But it does a little bit)

Solution #2:Forwarding

Fetch WritebackDecode Execute Memory

i1: addi s0, zero, 1

i2: addi s1, s0, 0

Cycle 1 s0 = 0

Cycle 2 s0 = 0

Cycle 3 s0 = 0

s0 is still zero, but i1 results forwarded to i2

results forwarded to decode within same cycle

Cycle 4 s0 = 0

Cycle 5 s0 = 0

Cycle 6 s0 = 1

Forwarding is possible in this situation
because the answer (s0 = 1) exists somewhere in the processor!

Datapath with Hazard Detection

Not very intuitive… We’ll visit it with code at a discussion section

Hazard #2:
Load-Use Data Hazard

❑ When an instruction depends on a register updated by a previous
instruction
o e.g.,

❑ Forwarding doesn’t work here, as loads only materialize at writeback
o Only architectural choice is to stall

i1: lw s0, 0(s2)

i2: addi s1, s0, 1

Fetch WritebackDecode Execute Memory

Register
File

Hazard #2: Load-Use Data Hazard

Fetch WritebackDecode Execute Memory

Cycle 1 s0 = 0

Cycle 2 s0 = 0

Cycle 3 s0 = 0

i2 stalled until s0 is updated

Forwarding is not useful because the answer (s0 = 1) exists outside the chip (memory)

i1: lw s0, 0(s2)

i2: addi s1, s0, 1

Cycle 4 s0 = 0

Cycle 5 s0 = 0

Cycle 6 s0 = 1

Cycle 7 s0 = 1i2 reads correct s0

A non-architectural solution:
Code scheduling by compiler

❑ Reorder code to avoid use of load result in the next instruction

❑ e.g., a = b + e; c = b + f;

lw x1, 0(x0)

lw x2, 8(x0)

add x3, x1, x2

sw x3, 24(x0)

lw x4, 16(x0)

add x5, x1, x4

sw x5, 32(x0)

stall

stall

lw x1, 0(x0)

lw x2, 8(x0)

lw x4, 16(x0)

add x3, x1, x2

sw x3, 24(x0)

add x5, x1, x4

sw x5, 32(x0)

14 cycles20 cycles

Compiler does best, but not always possible!

❑ Note: “la” is not an actual RISC-V instruction
o Pseudo-instruction expanded to one or more instructions by assembler

o e.g., auipc x5,0x1
addi x5,x5,-4 # ← RAW hazard!

Review: A problematic example

← RAW hazard

← RAW hazard

← Load-Use hazard

← RAW hazard

← RAW hazard

Other potential data hazards

❑ Read-After-Write (RAW) Hazard
o Obviously dangerous! -- Writeback stage comes after decode stage
o (Later instructions’ reads can happen before earlier instructions’ write)

❑ Write-After-Write (WAW) Hazard
o No hazard for in-order processors

❑ Write-After-Read (WAR) Hazard
o No hazard for in-order processors -- Writeback stage comes after decode stage
o (Later instructions’ reads cannot happen before earlier instructions’ write)

❑ Read-After-Read (RAR) Hazard?
o No hazard within processor

Fetch WritebackDecode Execute Memory

read rf write rf
3 cycle difference

Dangerous if a later instruction’s state access can happen before an earlier instruction’s access

Hazard #3:
Control hazard

❑ Branch determines flow of control
o Fetching next instruction depends on branch outcome

o Pipeline can’t always fetch correct instruction
• e.g., Still working on decode stage of branch

Fetch WritebackDecode Execute Memory

PC

i1: beq s0, zero, elsewhere

i2: addi s1, s0, 1

Cycle 1

Cycle 2

Should I load this or not?

Control hazard (partial) solutions

❑ Branch target address can be forwarded to the fetch stage
o Without first being written to PC

o Still may introduce (one less, but still) bubbles

❑ Decode stage can be augmented with logic to calculate branch target
o May imbalance pipeline, reducing performance

o Doesn’t help if instruction memory takes long (cache miss, for example)

Fetch WritebackDecode Execute Memory

PC

Aside: An awkward solution:
Branch delay slot

❑ In a 5-stage pipeline with forwarding, one branch hazard bubble is
injected in best scenario

❑ Original MIPS and SPARC processors included “branch delay slots”
o One instruction after branch instruction was executed regardless of branch results

o Compiler will do its best to find something to put there (if not, “nop”)

❑ Goal: Always fill pipeline with useful work

❑ Reality:
o Difficult to always fill slot

o Deeper pipelines meant one measly slot didn’t add much (Modern MIPS has 5+
cycles branch penalty!)

But once it’s added, it’s forever in the ISA…
One of the biggest criticisms of MIPS

CS250P: Computer Systems Architecture
Achieving Correct Pipelining

-- Branch Prediction

Sang-Woo Jun

Fall 2022

Large amount of material adapted from MIT 6.004, “Computation Structures”,
Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,

and CS 152 Slides by Isaac Scherson

Eight great ideas

❑ Design for Moore’s Law

❑ Use abstraction to simplify design

❑ Make the common case fast

❑ Performance via parallelism

❑ Performance via pipelining

❑ Performance via prediction

❑ Hierarchy of memories

❑ Dependability via redundancy

Control hazard and pipelining

❑ Solving control hazards is a fundamental requirement for pipelining
o Fetch stage needs to keep fetching instructions without feedback from later stages

o Must keep pipeline full somehow!

o … Can’t know what to fetch

Fetch WritebackDecode Execute Memory

Cycle 1

Cycle 2

Fetch PC = 0

Fetch PC = …? Decode PC = 0

Control hazard (partial) solution
Branch prediction

❑ We will try to predict whether branch is taken or not
o If prediction is correct, great!

o If not, we somehow do not apply the effects of mis-predicted instructions
• (Effectively same performance penalty as stalling in this case)

o Very important to have mispredict detection before any state change!
• Difficult to revert things like register writes, memory I/O

❑ Simplest branch predictor: Predict not taken
o Fetch stage will keep fetching pc <= pc + 4 until someone tells it not to

Predict not taken example

Fetch WritebackDecode Execute Memory

addi

addi addi

addi addibeq

addi addibeqsw t3

addi addibeqsw t3ret

Pipeline bubbles

addibeqsw t2

Mispredict detected!

Fetch correct branch

No state update before Execute stage detects misprediction
(Fetch and Decode stages don’t write to register)

How to handle mis-predictions?

❑ Implementations vary, each with pros and cons
o Sometimes, execute sends a combinational signal to all previous stages,

turning all instructions into a “nop”

❑ A simple method is “epoch-based”
o All fetched instructions belong to an “epoch”, represented with a number

o Instructions are tagged with their epoch as they move through the pipeline

o In the case of mis-predict detection, global epoch is increased,
and future instructions from previous epochs are ignored

Predict not taken example with epochs

Fetch WritebackDecode ExecuteMemory

addi (0)

addi (0) addi (0)

addi (0) addi (0)beq (0)

addi (0) addi (0)beq (0)sw t3 (0)

addi (0) addi (0)beq (0)sw t3 (0)ret (0)

Mispredict detected!

Fetch correct branch

addi (0)beq (0)sw t2 (1) sw t3 (0)ret (0)

epoch = 0epoch = 1

Ignored
ret (1) beq (0)sw t2 (1) ret (0)

Ignoredret (1) sw t2 (1)

Some classes of branch predictors

❑ Static branch prediction
o Based on typical branch behavior

o Example: loop and if-statement branches
• Predict backward branches taken

• Predict forward branches not taken

❑ Dynamic branch prediction
o Hardware measures actual branch behavior

• e.g., record recent history (1-bit “taken” or “not taken”) of each branch
in a fixed size “branch history table”

o Assume future behavior will continue the trend
• When wrong, stall while re-fetching, and update history

Many many different methods, Lots of research, some even using neural networks!

Pipeline with branch prediction

Fetch WritebackDecode Execute Memory

Branch
Predictor

PC Next PC
Feedback
(For dynamic branch prediction)

❑ Branch predictor predicts what should be the next PC
o Typically based on the current PC as input

❑ Dynamic branch predictors adapt to program using feedback

❑ If prediction is correct, great! If not, make sure mispredicted instructions
don’t effect state
o We looked at the epoch method of doing this (2 bubbles!)

Dynamic branch prediction

❑ Two questions about a PC address being fetched
o Will this instruction cause a branch?

o If so, where will it branch to?

o Both information are needed to predict-fetch a branch

❑ Two architectural entities for predicting the answer to these questions
o Branch History Table (BHT)

• Whether this instruction is an instruction, and if it causes a branch

o Branch Target Buffer (BTB)
• Which address this instruction will jump to

o (There are many variations – This is a common example)

Dynamic branch prediction

PC

Branch History Table
(BHT)

Branch Target Buffer
(BTB)

method Word predict(Word pc) begin
Word next_pc = pc + 4;
Bit#(10) lsb = truncate(pc);
if (bht[lsb]) next_pc = btb(lsb);
return next_pc;

end

PC + 4

prediction

taken?

Why truncate PC? BHT/BTB is typically small! (2048 elements or so)
Different branches may map to same buffer element… 

Execute stage updates BHT and BTB
with actual behavior (if it is a branch instruction)

Back to the three questions

❑ Is it a branch instruction?
o Execute updates BHT if it is a branch instruction

❑ Is the branch taken?
o BHT stores if the branch was taken last time

❑ Where does the branch go?
o BTB stores where it went to last time

❑ Of course, all three are merely predictions!

Impact of branch predictors on performance

Marek Majkowski, “Branch predictor: How many "if"s are too many? Including x86 and M1 benchmarks!” The Cloudflare Blog, 2021

What happens at 4096?

Impact of branch predictors on performance

What happens here?

Answer:
“Xeon BTB is 8-way set-associative”
-- will re-visit after talking about caches

jmp instructions placed evenly 64 bytes apart
will harm performance…

Simple example:
1-bit predictor

❑ BHT has one-bit entries
o Most recently taken/not taken

o (“Last time predictor”)

o Does this work well?

❑ How many mispredicts with these taken (T), not taken (N) sequences?
o TTTTTNNNNN

o TNTNTNTNTN

o for (i = 0 … 2) {
for (j = 0 … 2) {
}

}

TTTTTNNNNN
TNTNTNTNTN

Mispredict at j = 0 (T), j = 2 (N)

Simple example: 2-bit predictor

❑ BHT has two bits – Single outlier does not change future predictions
o 00: Strongly not taken, 01: Not taken, 10: Taken, 11: Strongly taken

o Taken branch increases number, not taken branch decreases number

o Counter saturates! Taken after 11 -> 11, Not taken after 00 -> 00

❑ How many mispredicts with these taken (T), not taken (N) sequences?
o TTTTTNNNNN

o TNTNTNTNTN

o for (i = 0 … 2) {
for (j = 0 … 2) {
}

}

TTTTTNNNNN
Initialized to 01: TNTNTNTNTN
Initialized to 10: TNTNTNTNTN

Mispredict once at i = 0 && j = 0 (T), j = 2 (N),

In reality, most SPEC benchmarks record ~90% accuracy with 2-bit predictor

Branch prediction and performance

❑ Effectiveness of branch predictors is crucial for performance
o Spoilers: On SPEC benchmarks, modern predictors routinely have 98+% accuracy

o Of course, less-optimized code may have much worse behavior

❑ Branch-heavy software performance depends on good match between
software pattern and branch prediction
o Some high-performance software optimized for branch predictors in target

hardware

o Or, avoid branches altogether! (Branchless code)

In the real-world: Core i7 performance

❑ Branch predictors work pretty well!
o But deep/wide pipelines result in high

mispredict overhead

Aside:
Impact of branches

“[This code] takes ~12 seconds to run. But
on commenting line 15, not touching the
rest, the same code takes ~33 seconds to
run.”

“(running time may wary on different
machines, but the proportion will stay the
same).”

Source: Harshal Parekh, “Branch Prediction — Everything you need to know.”

Aside:
Impact of branches

Source: Harshal Parekh, “Branch Prediction — Everything you need to know.”

Slower because it involves two branches

Aside: Branchless
programming

Source: Harshal Parekh, “Branch Prediction — Everything you need to know.”

CS250P: Computer Systems Architecture

Performance Profiling with PerfTools

Sang-Woo Jun

How To Evaluate Our Approaches?

❑ Say, we made a performance engineering change in our program
o …And performance decreased by 10%

o Why? Can we know?

❑ Many tools provide profiling capabilities
o gprof, OProfile, Valgrind, VTune, PIN, …

❑ We will talk about perf, part of perf tools
o Native support in the Linux kernel

o Straightforward PMC (Performance Monitoring Counter) support

Aside:
Performance Monitoring Counters (PMC)

❑ Problem: How can we measure architectural events?
o L1 cache miss rates, branch mis-predicts, total cycle count, instruction count, …

o No way for software to know

o Events happen too often for software to be counting them

❑ Solution: PMCs (Sometimes called Hardware Performance Counters)
o Dozens of special registers that can each be programmed to count an event

o Privileged registers, only accessible by kernel

o Supported PMCs differ across models and designs

❑ Usage
o Program PMC, read PMC, run piece of code, read PMC, compare read values

Linux Perf

❑ Performance analysis tool in Linux
o Natively supported by kernel

o Supports profiling a VERY wide range of events: PMC to kernel events

o Note: needs sudo to do most things

❑ Many operation modes: top, stat, record, report, …
o Supported events found in “sudo perf list”

…

Linux Perf: Stat

❑ Default command prints some useful information
o “sudo perf stat ls”

❑ More events can be traced using -e
o sudo perf stat -e task-clock,page-faults,cycles,instructions,branches,branch-

misses,LLC-loads,LLC-load-misses ls

Linux Perf: Record, Report

❑ Log events with “record”, interactively analyze it with “report”
o sudo perf record -e cycles,instructions,L1-dcache-loads,L1-dcache-load-misses […]

o Creates “perf.data”

❑ “sudo perf report” reads “perf.data”

This is where
most cycles are spent!

This is where
most L1 cache misses are!

Loop unrolling:
A compiler solution to branch hazards

for (i = 0 to 15) foo(); for (i = 0 to 3) {
foo();
foo();
foo();
foo();

}

Potentially 16 branch mispredicts
Even without mispredicts,
branch instruction consume 16 cycles

Potentially 4 branch mis-predicts
Without mis-predicts,
branch instruction consume 4 cycles

Loop unrolling

We can do this manually, or tell the compiler to do its best
- GCC flags -funroll-loops, -funroll-all-loops
- How much to unroll depends on heuristics within compiler

Code example: Counting numbers

❑ How fast is the following code?
o a and b are initialized to rand()%256

o cnt is 100,000,000

o Compiled with GCC –O3

❑ This code takes 0.44s on my desktop (i5 @ 3 GHz)
o Each loop takes 13.2 cycles (3 GHz * 0.44 / 100,000,000)

o Can we do better? My x86 is 4-way superscalar!

Optimization attempt #1: Loop unrolling

❑ There are three potential branch instruction locations
o “i < cnt”, “a[i] < 128”, and b[i] < 128”

❑ Is the bottleneck the “for” loop?
o Let’s try giving -funroll-all-loops

❑ Performance increased from 0.44s to ~0.43s.
o Better, but not by much

Identifying the bottleneck

❑ We predict the “if” statements are the bottlenecks
o Each of the two branch instructions has a 50% chance of being taken

o Branch prediction very inefficient!

❑ Performance improves when comparison becomes skewed
o 0.44s when comparing against 128 (50%)

o 0.27s when comparing against 64 (25%), 0.17s with 32

Optimization attempt #2: Branchless code

❑ Let’s try getting rid of the “if” statement. How?

❑ Some knowledge of architectural treatment of numbers is required
o x86 represents negative numbers via two’s complement

o “1” == 0x1, “-1” == 0xffffffff

o “1>>31” == 0x0, “-1>>31” == 0xffffffff

❑ “(v-128)>>31”
o if v >= 128: 0x0

o v < 128: 0xffffffff
So many more instructions! Will this be faster?

Comparing Performance Numbers

Name Elapsed
(s)

Vanilla 0.44 s

Branchless 0.06 s

Vanilla on sorted data 0.05 s

Branchless on sorted data 0.06 s

~2 cycles per loop! 8 Operations with 4 way superscalar…

Branch predictor is almost always correct

Vanilla: Total misses: 57 M out of 3,623 M

Branchless: Total misses: 7 M out of 3,514 M

Interestingly, loop with only one comparator is automatically optimized by compiler

Shows same performance as the branchless one

Over 7x performance!

CS250P: Computer Systems Architecture
Achieving Correct Pipelining

-- Superscalar

Sang-Woo Jun

Fall 2022

Large amount of material adapted from MIT 6.004, “Computation Structures”,
Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,

and CS 152 Slides by Isaac Scherson

Superscalar Processing

❑ An ideally pipelined processor can handle up to one instructions per
cycle
o Instructions Per Cycle (IPC) = 1, Cycles Per Instruction (CPI) = 1

❑ Superscalar wants to process multiple instruction per cycle
o IPC > 1, CPI <1

o An N-way superscalar processor handles N instructions per cycle

o Requires multiple pipeline hardware instances/resources

o Hardware performs dependency checking on-the-fly between concurrently-
fetched instructions

Pipeline for superscalar processing

❑ Multiple copies of the datapath supports multiple instructions/cycle

❑ Register file needs many more ports

❑ Actually requires a complex scheduler in the decode stage!

Fetch Execute Memory

Register
File

Decode

Decode

Execute Memory Writeback

Writeback

Superscalar has concurrent hazards

❑ What if two concurrently issued instructions have dependencies?
o No choice but to stall the dependent instruction…

o … in an in-order pipeline!

❑ Data hazards
o e.g., “addi s1, s0, 1” and “addi s2, s1, 1” issued at the same time?

• Forwarding won’t work here! Both instructions in decode stage at the same time

• Scheduler must stagger “addi s2, s1, 1”, sacrificing performance

❑ Control hazards
o e.g., How to handle a beq, followed by another instruction?

• Branch prediction, as usual

Results in very complex control logic! (Chip resources/cost!)

← Topic for another day

In-order superscalar example

lw t0, 40($s0)

add t1, $s1, $s2

sub t2, s1, s3

and t3, s3, s4

or t4, s1, s5

sw s5, 80(s0)

Time (cycles)

1 2 3 4 5 6 7 8

RF
40

$s0

RF

$t0
+

DM
IM

lw

add

lw $t0, 40($s0)

add $t1, $s1, $s2

sub $t2, $s1, $s3

and $t3, $s3, $s4

or $t4, $s1, $s5

sw $s5, 80($s0)

$t1
$s2

$s1

+

RF
$s3

$s1

RF

$t2
-

DM
IM

sub

and $t3
$s4

$s3

&

RF
$s5

$s1

RF

$t4
|

DM
IM

or

sw
80

$s0

+ $s5

Actual IPC = 2 (6 instructions issued in 3 cycles)

Ideal IPC = 2 (2-Way superscalar)

No dependencies between
any instructions

Source: Onur Mutlu, “Design of Digital Circuits,” Lecture 16, 2019

In-order superscalar with dependencies

lw t0, 40(s0)

add t1, t0,$s1

sub t0, s2, s3

and t2, s4, t0

or t3, s5, s6

sw s7, 80(t3)
Stall

Time (cycles)

1 2 3 4 5 6 7 8

RF
40

$s0

RF

$t0
+

DM
IM

lw
lw $t0, 40($s0)

add $t1, $t0, $s1

sub $t0, $s2, $s3

and $t2, $s4, $t0

sw $s7, 80($t3)

RF
$s1

$t0
add

RF
$s1

$t0

RF

$t1
+

DM

RF
$t0

$s4

RF

$t2
&

DM
IM

and

IM
or

and

sub

|$s6

$s5
$t3

RF
80

$t3

RF

+

DM

sw

IM

$s7

9

$s3

$s2

$s3

$s2

-
$t0

or
or $t3, $s5, $s6

IM

Ideal IPC = 2 (2-Way superscalar)

Actual IPC = 1.2 (6 instructions issued in 5 cycles)

Dependencies across
many instructions!

Stalled until writeback
can be forwarded

Stalled until exec
can be forwarded

No stall, exec
can be forwarded

Source: Onur Mutlu, “Design of Digital Circuits,” Lecture 16, 2019

In the real-world: Core i7 performance

❑ Core i7 has a 4-way Out-of-Order
Superscalar pipeline
o Ideally, 0.25 Cycles Per Instruction (CPI)

o Dependencies and misprediction
typically results in much lower
performance

Is it worth it? Or do we want just more, simpler cores?
Depends on your target area (servers? phones?) and
profiling results…

Aside: Macro-op Fusion

❑ Multiple (typically 2) instructions can be “fused” into a one
o Decoder hardware emits one decoded instructions from two

o This does not affect ISA! Totally transparent to programmer/compiler

❑ Why?
o Smaller number of instructions to process

o While still maintaining RISC ISA (Also used in CISC / x86 with smaller instructions)

o Typical criticism of RISC is a larger number of generated instructions for same
program
• (More cycles to execute same program)

Can be fused into one instruction
Without more functionality in the execute stage

Source: Wikichip

rd is immediately “clobbered” by ld
Only one register write persists

Aside: Macro-op Fusion

❑ RISC-V benchmarks (RV64GC)
o SPECINT 2006 benchmarks

o Handful of fusion rules

o About 5% decrease in executed instruction count

❑ Compared against x86-64
o Without MOP Fusion: 1.16x instructions

o With MOP Fusion: 1.09x instructions!

❑ RISC paradigm but with less instruction overhead!

Cielo, Christopher, et. al, “The renewed case for the reduced instruction set computer: Avoiding ISA bloat with macro-op fusion for RISC-V”, 2016

Programmer: I was not consulted about this!

❑ Programmer: “If the processor told me it had parallel processing units, I
would have written code optimized for it!”

Modern Processor Topics - Performance

❑ Transparent Performance Improvements
o Pipelining, Caches

o Superscalar, Out-of-Order, Branch Prediction, Speculation, …

o Covered in CS250A and others

❑ Explicit Performance Improvements
o SIMD extensions, AES extensions, …

o …

